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1. Introduction  

The Bureau of Meteorology routinely makes dynamical seasonal predictions 

out to 9 month lead time with the POAMA coupled ocean-atmosphere forecast 

system. POAMA (Predictive Ocean Atmosphere Model for Australia) is an intra-

seasonal to inter-annual climate prediction system based on coupled ocean and 

atmosphere general circulation models. The main focus for POAMA-1 is the 

prediction of sea surface temperature (SST) anomalies associated with El Niño / La 

Niña, for which POAMA’s predictions are internationally competitive. El 

Niño/Southern Oscillation (ENSO) is the dominant driver of Australian climate 

variability, thus POAMA’s forecasts have great value for anticipating the behavior of 

El Niño. 

The POAMA system is continually evolving and improving, and subsequent 

versions of POAMA will address problematic bias and drift that hinder direct 

prediction of regional climate variations, such as rainfall and temperature across 

continental Australia. New versions of POAMA will have improved horizontal 
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resolution and improved parameterization of physical processes so as to better resolve 

and simulate regional climate. Future development of the components of the POAMA 

system will be done as part of the ACCESS project. ACCESS is a joint Bureau, 

CSIRO, and Australian Universities project that aims at coordinated development of 

core components of an earth system model and data assimilation systems to support a 

range of applications, including the POAMA seasonal prediction. These 

developments should improve the direct prediction of regional climate variability.  

However, even assuming model drift and bias can be improved and that 

increased resolution leads to better regional climate simulation, the degree of 

predictability of regional climate is unknown.Perfect prediction of the slowly varying 

surface boundary forcing (primarily tropical sea surface temperatures; SST), which is 

thought to be the main source of seasonal climate predictability, will predict only a 

portion of actual climate variability due to the presence of internal atmospheric noise. 

Nonetheless, an assessment of the theoretical upper limit of predictability, given 

perfect knowledge of the slowly varying boundary forcing, will provide an upper 

bound on the expected skill of the POAMA system. This report focuses on the 

assessment of potential predictability of rainfall and the relative role of boundary 

forcing from the tropical Pacific and Indian Oceans. 

2. Atmospheric Model Component of POAMA-1 and experimental design 

The atmospheric component of POAMA-1is based on version 3 of the 

Bureau’s Atmospheric Model (Colman et al. 2004).  The atmospheric model is run 

with modest horizontal resolution (~300 km resolution) and with 17 vertical levels. 

The primary deficiencies of this modest atmospheric resolution are the inability to 

resolve local climate variations associated with regional topography and orography 

(e.g. the Dividing Range is not well represented) and extratropical storm tracks that 

are too diffuse.  

To assess potential predictability of regional climate, we assume perfect 

knowledge of the slow variation of tropical SST for the period 1982-2003. 

Effectively, we replace the ocean model component of POAMA with a prescription of 

 2



the SST variation that actually occurred. We prescribe these observed variations of 

SST at latitudes equatorward of 30 degrees. Poleward of 30 degs latitude, 

climatological SST is prescribed. We refer to this experiment as “global SST”. An 

ensemble of eight integrations is carried out so as to sample the atmospheric noise that 

is unrelated to the slow variation of boundary forcing. Initial conditions for each 

member differ only slightly.  

To assess the relative roles of forcing from the Pacific and Indian Oceans, we 

conduct 3 additional experiments. In “Pacific large”, observed SST variations are 

prescribed in the entire tropical Pacific Ocean, while climatological SST is prescribed 

elsewhere. In “Pacific small”, observed SST is prescribed only in the eastern tropical 

Pacific Ocean. These two experiments are aimed at elucidating the global 

teleconnections that are driven by SST variations associated with El Niño/Southern 

Oscillation (ENSO). The Pacific small runs are aimed at understanding the forcing by 

SST variations in the main El Niño region of the equatorial eastern Pacific. The 

Pacific large runs include the SST forcing in the far western Pacific, where anomalies 

during ENSO tend to be out of phase with those in the eastern Pacific. The role of 

Indian Ocean SST is highlighted in the Indian experiment, where observed SST 

variations are prescribed only in the tropical Indian Ocean. In all cases, 8 ensemble 

members are generated for the period 1982-2003 using slightly different initial 

conditions.    

3. Potential Predictability of Rainfall 

Analysis of variance (Scheffe 1959) is used to isolate the potentially predictable 

signal produced by the slow evolution of prescribed SST from the unpredictable 

atmospheric background noise (e.g., Rowell et al. 1995). Let a seasonal mean (e.g., 

September-November average) anomaly at a given location be denoted by aik, where i 

is the year index that goes from 1 to 22 (years 1982-2003) and k the ensemble number 

of the AGCM run that goes from 1 to 8. For year i, the predictable climate signal 

(CSi) is estimated as the average of all 8 members, that is,       
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The climate noise for run number k and year i (CNik) is simply the deviation from the 

predictable signal, that is 

CNik = aik − CSi.        

The variance of the unpredictable noise for year i can then be obtained by    
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Note that the denominator is 7 instead of 8 because the degrees of freedom are one 

less than the total number of realizations for a second moment. 

Let VN represent the average of noise variance over all 22 years of simulation;  
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Although the monthly mean climatology is already removed from the monthly 

dataset, we recalculate the yearly mean climatology as 
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The variance of the climate signal (VS), which is the predictable component of the 

variability, is simply obtained with reference to CLIM, as 
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Again, there is one less than the total degrees of freedom for this second moment. 

The estimate of the climate signal for a given year is obtained from an ensemble of 

only 8 members. It represents a small sample estimate. Because of the uncertainty in 

estimating CSi from the true population climate signal, VS will always overestimate 

the externally forced variability. The amount of overestimation is VN/8, according to 
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a standard analysis of variance (e.g., Scheffe 1959). We thus subtract VN/8 from our 

estimate of VS to obtain a more accurate estimate of the predictable component of 

climate variability. The total variance then can be represented as Vartot=VS+VN.  An 

estimation of the predictable signal strength is simply the ratio of VS/Vartot. 

Computation of predictable signal strength is done for each season (DJF, MAM, JJA, 

and SON) in order to elucidate, for instance, seasonal dependence of predictability 

stemming from El Niño. 

The potentially predictable rainfall, as indicated by the ratio VS/Vartot, is displayed in 

Fig. 1 for each season (DJF, MAM, JJA, and SON). This analysis indicates that SE 

Australian rainfall is most predictable (in the BAM3 model) in autumn through 

spring, when up to 30% of the rainfall variance is predictable. That is, if we could 

perfectly predict global tropical SST, the maximum amount of rainfall variability that 

we could expect to predict is about 30%.  This estimation of potential predictability is 

in line with the observed rainfall variance accounted for by El Niño (Fig. 2), which is 

the dominant source of interannual variation of SST. 

Based on our additional experiments, the source of potential predictability can be 

attributed to the SST variations in the Indian Ocean and/or Pacific Ocean. The 

motivation for this attribution is both to better understand the source of predictability 

but to also provide insight into where improvements in the prediction system might 

lead to the greatest improvement of prediction. Interestingly, a large portion of the 

predictable rainfall variability in the SE during spring (SON; Fig 3) and winter (JJA; 

Fig. 4) stems from SST variations in the tropical Indian Ocean. This might appear to 

be counter to the notion that ENSO is the main driver of rainfall variability during 

these seasons. However, during ENSO SST anomalies co-vary in the Indian Ocean 

with those in the equatorial Pacific (Fig. 5). For instance, in the SON season, warm 

SST anomalies in the central Pacific during El Niño tend to co-occur with cold 

anomalies in the eastern equatorial Indian Ocean. Thus, it is possible that 

predictability arising from ENSO stems from the coherent variation of SST in the 

Indian Ocean and not as a direct result of SST variations in the equatorial Pacific. 

This is confirmed in Figures 6 and 7, which show the correlations of rainfall with the 

Nino4 index in each of the four experiments. Figures 6a and 7a are identical to 
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Figures 2d and c, respectively. That is, they show the correlation of simulated rainfall 

with the Nino4 SST index for the runs with SST prescribed throughout the global 

tropics. Inspection of the other panels in Fig. 6 and 7 reveals that a large portion of the 

rainfall relationship in the SE during ENSO actually stems from the SST forcing in 

the Indian Ocean that accompanies ENSO.  

We provide further insight into the role of SST variations in the two ocean basins by 

diagnosing the patterns of SST variability that are related to the predictable rainfall 

anomalies in the SE. We do this by computing the correlation of the ensemble mean 

rainfall time series averaged over SE Australia (35-40S, 130-140E) with SST at each 

grid point (over land points we use the model’s simulated land surface temperature). 

For the SON season, the pattern of SST that correlates to SE Australian rainfall for the 

global experiment (Fig. 8a) is nearly identical to that associated with La Niña 

(opposite sign of Fig. 5 d). This confirms that SE rainfall is responding strongly to El 

Niño/La Niña. But, rainfall is nearly equally sensitive to Indian Ocean SST (Fig. 8c) 

as it is to eastern equatorial Pacific SST (Fig. 8d). However, close inspection of Fig. 8 

reveals that the peak correlation with SST in the eastern Pacific for the Pac-small 

experiment is slightly lower than for the global experiment. This further suggests that 

the coherent variation of SST during ENSO in the Indian Ocean is an additional 

source of predictability beyond that of El Niño in the Pacific. 

4. Conclusions 

Based on analysis of a suite of “perfect SST” experiments with the atmospheric model 

of the POAMA seasonal forecasts system, SE Australian rainfall is found to be most 

predictable in autumn through spring, when up to 30% of the rainfall variance is 

predictable. That is, if we could perfectly predict global sea surface temperatures, the 

maximum amount of rainfall variability that we could expect to predict is about 30%. 

This estimate of 30% is an upper limit, as we know that we can never perfectly 

predict SST. Nonetheless, SST is highly predictable at short lead time. Furthermore, 

there may be some additional predictability at short lead time as a result of anomalous 

initial land surface conditions (e.g., soil moisture anomalies) or low frequency 

atmospheric disturbances (e.g., the MJO). Such a possibility is being explored with 
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new versions of POAMA that have improved land surface and atmospheric 

initialization. Therefore, 30% predictability should not be viewed as being 

unattainable. Nonetheless, the potential usefulness of 30% predictability of rainfall 

needs to be assessed. For instance, predictability of crop yield or stream flow could be 

assessed based on output from this ensemble of simulations, where both the 

predictable component and noise component of the climate is known and well 

sampled.  

The estimation of potential predictability of SE Australian rainfall in this study, while 

highly dependent on the model that was used, is in line with the observed rainfall 

variance that is  accounted for by El Niño, which is the dominant source of 

interannual variation of SST and of rainfall variability. Interestingly, this study 

indicates that a large portion of the predictable rainfall variability in the SE during 

spring and winter stems from SST variations in the tropical Indian Ocean. This might 

appear to be counter to the notion that ENSO is the main driver of rainfall variability 

during these seasons. However, during ENSO SST anomalies co-vary in the Indian 

Ocean with those in the equatorial Pacific, and it is this co-varying SST in the Indian 

Ocean that drives  a significant portion of  the predictable rainfall variations in the SE. 

These results indicate that improvement of rainfall prediction in the SE from the 

POAMA system will require improved initialization and simulation of the Indian 

Ocean. Currently, model bias and lack of accurate initial oceanic and atmospheric 

conditions hinder the ability to predict the coupled-state of the Indian Ocean. 

However, improvements to the POAMA component models should alleviate some of 

the bias in the Indian Ocean (in particular, the overall cold SST bias and elevation of 

the thermocline in the eastern Indian Ocean). Furthermore, a new ocean assimilation 

system is nearing completion and will be part of the POAMA 2 system. This new 

assimilation scheme, which initializes salinity, temperature and currents, shows great 

promise for improved initialization of the Indian Ocean. Experiments to assess its 

impact on predictability of Australian climate will commence shortly.  
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Figure 1.   Predictable fraction of  rainfall variability forced by global SST for the 

four seasons 
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Figure  2. Correlation of simulated rainfall with the Nino4 SST index, by season. Note 

the correlation in SE Australia in SON ranges up to about 0.6, which implies that 

about 35% of the rainfall variability is accounted for by El Niño. 

 10



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Predictable fraction of  spring time rainfall variability forced by a) global 

SST,  b) Indian Ocean SST, c) tropical Pacific SST, and d) tropical east Pacific SST 
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Figure 4. Predictable fraction of winter time rainfall variability forced by a) global 

SST,  b) Indian Ocean SST, c) tropical Pacific SST, and d) tropical east Pacific SST 
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Figure 5. Correlation of Indo-Pacific SST with the Nino4 SST index by season 
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Figure 6. Correlation of Nino4 SST index with simulated ensemble mean 

rainfall SON  
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Figure 7 Correlation of Nino4 SST index with simulated ensemble mean 

rainfall for JJA.  
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Figure 8. Correlation of SE Australian-mean rainfall with SST in the four experiments 

for the SON season. 
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